Why Use Carbon (Technology), When We Have Silicon?

“… year after year, HS juniors ALWAYS scored lower than the sophomores on the middle school-level items.”

The math instructors at my technical college generalized that “math skills have a half-life of about two years”, which seems to corroborate that experience.

Our business and industry advisory committees demanded that we refresh pencil-paper computational skills for all the school associate-degree programs.  Their experience with applicants was that “back-up” computational methods (as well as “back-of-the-envelope”) were needed in the workplace in timely situations when technology was not available. They also emphasized the importance of “use-it-or-loose-it” continuous refreshment of basic skills. They still wanted pencil-paper computations to be refreshed.

My initial course assessment included a set of “no calculator” computations, as well as typical single-step problems for which calculators were allowed. A formula reference sheet was provided. The assessment was self-scored by the student the next class period, and did not impact their course grade. The final test contained the same skills. Item for item, but with different numbers.

Average score on the initial assessment was consistently about 50%, indicating that many skills had not been refreshed in the junior or senior high school years. We also had an approximate 15% non-traditional population, who had been out of school for several years. We noted that those who had dropped out of high school and obtained GEDs scored much lower.

According to my records, completers of my three-credit semester classes over two decades achieved an average of 82%. This gives evidence that recent, relevant, and required refreshing of math skills should be required of ALL students in the junior year.

While we never formalized or documented any research data on these results, our generalizations appear similar to your conclusions. I would appreciate any specific links to research that maybe useful on this important topic.

In any case, we found that carbon technology (the pencil) shouldn’t be discarded just because we now have silicon (the calculator).

An Education “Transformation” in this Decade? Yes!

Throughout a variety of continued blog discussions, there appears to be a lot of repetitive bashing of the current “education system”, as though it were some dystopian governmental monolith, intentionally preserving its status quo through oppression of better ideas for teaching and learning. I suggest, though, that it is doing what it was designed to do, as a product of the Fordist assembly-line factory organization of the first half of the Twentieth Century. We should recognize that, as a vehicle without wings, traditional education cannot provide effective and relevant learning experiences for ALL students, as we wish. Further criticism won’t change the situation.


What is missing, though, are the understandings we have gained with a “PostModernist World View” which has evolved in latter half of the century. Von Bertalanffy, Boulding, and Beers (The “Three B’s” ?), among others, have given us “systems thinking” methods of looking a structures and relationships among  organizations to make them more efficient and cost-effective. Deming’s techniques of measuring quality can be also used to improve the rates of “success”, even when applied within that factory model.


Computer processing speed and displays now let us interact with modeling constructions so that we may visualize how natural, social, and education systems and processes work, to simulate alternatives, and to predict possible outcomes. Most recently, the use of digital media, wide-bandwidth communications, and data storage capacity have made quality content information available to the far reaches of the globe. We are also learning techniques of informatics for analysis and to make real-time recommendations about various choices students, teachers, and administrators can make, much as Amazon tracks and suggests our online shopping experiences. Also, the science of complexity has provided various “non-linear” ways of looking at learning and education as diverse, evolutionary, and emergent processes, utilizing effective strategies from gaming theory, graph theory, and risk management to improve the sustainability of our current and future societies.


So I see this decade as an exciting time in which a true transformation in education can occur, when the perspectives of “Systems, Quality, Modeling, Informatics, and Complexity (SQMIC)” are implemented. I feel these five perspectives are parts of “WKID Intelligence”, a substrate underlying the typical content areas  of STEM, the “Humanities, Arts, and Social Sciences (HASS), as well as “Health, Physical Education, and Recreation (HPER)”.  Access to a variety of interactive “apps” would provide tools to assist learning, as technology skills needed in a global economy, and would also be part of the organizational processes that guide their learning experiences.


Rather than an assembly of instructional components put in place and tested at certain times, learners could become designers of their own understandings of their world, by developing data into information, building that into the knowledge they need for entry into society, and, hopefully, gaining wisdom enough to become successful. Much like the “3-D printers” we are seeing these days, education could become an efficient, effective, and customized production and delivery system that morphs out of rigid traditional modes, and truly becomes a “Comprehensive STEM Curriculum Framework for the 21st Century”.

Flying John Boyds “OODA Loop” through STEM

John Boyd’s contribution to systems thinking was the “OODA Loop” – Observe, Orient, Decide, Act – with a feedback loop that brings the results back into a new cycle. As a combat fighter pilot instructor, he was known as “40 second Boyd” because he shot down every bogey within forty seconds of contact.


His key contribution was in the “Orient” thought process, in which the agent filters through “culture, genetics, ability to analyze and synthesize, and previous experience”, with a “faster tempo” than the adversary, who does not have enough time to “generate mental images”, with the effect of making the situation unpredictable. The most well-known strategic application of the OODA Loop, of course, was the Gulf War, in which the first strikes into Iraq disrupted Sadam’s communications networks, thus slowing his awareness of the actual situations.


A good description of the OODA Loop and its applications to military, business, and other aspects of systems thinking is provided on Wikipedia, as a first link to other reference information.


While it appears that many commentors to this thread express concerns about getting the whole “system of education” correct before we begin to take action, I prefer to utilize the OODA Loop, with incremental and iterative repetitions of trying new methods and evaluating the results, and then go around again, in developing an effective teaching/ learning system and process.


My descriptions of a “Comprehensive STEM Curriculum Framework for the 21st Century”, as described previously in this topic thread, identify every high school STEM topic with a three-dimensional coordinate of instructional modules and lessons in an “InfoSpace”, much like the Nevada skies Boyd flew in.


Those modules utilize the “Information Mapping” techniques of Robert E. Horn, in which the learning activities are developed using templates according to the type of instruction, such as: Fact, Concept, Structure, Procedure, Principle, Process, and System. Hyperlinks then connect the content modules to others, allowing alternative pathways through the InfoSpace, with waypoints identified for required graduation competencies. Each lesson, module, unit, and course has review and assessment components that give immediate feedback to the learner, and also provides documentation for the student, teacher, and administrators. This empowers learners to employ their own OODA Loops as they proceed through the highways and byways of the InfoSpace.


This overall plan, then, prepares the whole of STEM content in a way that allows flexible exploration, in groups or individually, using effective teaching/ learning practices, with immediate feedback to all stakeholders. I think that it is a “good enough” attempt to add to the discussion about transforming education. So while some may say that such a process may appear to be “designing and building the aircraft while flying it”, I don’t mind, since at least I’m flying – in the Boydian Way.

STEM as a Sandwich? Might be good!

Technology, as a whole, is an important part of the STEM curriculum in that it shares some “habits of mind”, as compared to the language, arts, and social science subject areas. While science utilizes the scientific method to understand principles of matter and energy in our world, we find that mathematics allows us to quantify those principles and make predictions by utilizing rigorous proofs, and engineering gives us a “built world” that gives us utility, survivability, and (hopefully) sustainability as a global society. Technology’s role is for the use, operation, and maintenance of that built world. Principles, proofs, and designs have no value to us unless they are put into action in our lives and communities. And we need technical people to keep that clockwork machinery running.


So what Technology brings to the STEM curriculum, I think, is that every high school graduate needs: to know how to put those “Owner’s Manuals” to use for all those gadgets they have; an awareness of the ‘”theory of operation” of how those devices work; recognition of dangerous situations and safety precautions; and some sense of a troubleshooting process when things aren’t working right. These skills and practices are exactly those critical-thinking and problem-solving techniques that are supposed to be part of an overall high school curriculum.


Yet these “modes of thought” should not get too tangled up in specific products or occupational fields. In my suggestions for a “Comprehensive STEM Curriculum Framework for the 21st Century”, those options would be provided in the third dimension of “Applied Career Preparation Pathways”, such as: Agriculture, Business, Communications, Construction, Health, Information Technology, Marketing, Manufacturing, and Transportation, among others.


So once learners develop “Core Content Competencies” of the STEM topics, to the step of a “Basic Workplace Skill Set” needed for entry into a desired occupational level, they can explore the career pathways of their choice as applications of where their “S, E, and M” knowledge is put to use. This would also be most appropriate for longer term projects, small-group interactions, and so forth. The technology aspects of the STEM curriculum, then, would be “capstones” to the essentials of the traditional courses, and infused throughout the programs, rather than distinct courses in themselves.


Likewise, the techniques of “information” would be tapped into where appropriate, including those involving Systems, Quality, Modeling, Informatics, and Complexity (SQMIC). We can integrate the traditional STEM subjects by building on a substrate of these “Big I = Information” tools, while overlaying them with options leading to applications in various career pathways. High school graduates would be much better prepared for life and work, I believe, with such an integrated “sandwich” curriculum, than the “silo” or “stovepipe” traditional structure in common use.

Using “Information Mapping” Techniques to Generate “Reusable Learning Objects”

The “instructional design” that I am working with is a modification of the “information mapping” (IM) work of Robert E. Horn. It is based on the idea that various “blocks” of information can be set within generic templates, so that documents, web pages, presentations do not have to be regenerated from scratch every time. So the templates and sample documents generally save time and effort by requiring only the details and specifics to a situation. It is mostly used for formal, standardized types of communications in the business world, to my understanding.

For instruction, the IM techniques and templates I use are based on a “package” that includes a “wrapper” of auxiliary information around the instructional content itself. Since the delivery, information, and support components of the wrapper are stored in a database, they are accessible as “reusable objects” in a variety of different applications through links to the database. The information itself does not have to be re-created and regenerated for every specific use, thus reducing the 40% of time you describe to 10%, for “the goals, the learning outcomes, activities in itself, the planning of it, the fitting, the adjustment, the linkage between learning activities, the assessments points, the anchor moments…”. With wireless access to this information, students could locate this auxiliary information at their convenience, reducing instructor effort.

For the content information itself, Horn organizes topics into several types and provides model templates for each, insuring that all the necessary components are provided for the best learning efficiency. I use the topic types of: fact, concept, structure, procedure, principle, process, and system. Again, the preparation effort becomes a matter of fitting the content into the proper “containers”. So this addresses your second point, that “here is the first strong moment: you can focus on that activity alone knowing that it will fit the overall puzzle you already have.” I suggest that this interaction time with the students could become 80% of the time, up from the 40% you suggest.

Since quiz, test, assessment, direct observation, and other evaluation techniques are built into the “wrapper” as a follow-up component, the feedback is continual and ongoing, in both part-task and full-task completion points. So the time for this part of the learning cycle should be 10%, I feel, rather than the 20% you mention.

The big advantage to beginning with a “package” template that prepares the content in modular form, and puts a “wrapper” of auxiliary data around it, is that it is reusable and scalable throughout the curriculum. It can be used at the course, unit, module, lesson, and topic levels. This addresses your concerns that ” after students pass all the activities you feel that you create something strong: with coherence and focus on the learning target”, and “if want to change anything you have a road map that helps you detect and change what you want without collapsing the structure.”

My current efforts involve converting a large amount of paper information to electronic form. The next step will be to put it all into a database as “elements”, which can then be packaged using the IM templates described above. I would later on like to put it into an open-source CMS, such as Moodle, so that my work is not involved with proprietary issues.

For over three decades of teaching at the high school and technical college levels, I was continually frustrated with have to redo instructional materials to revise, update, and improve them every time the “newest and greatest” instructional technique came around. By integrating and modifying ideas from Merrill, Clark, Horn, and others, I feel I now have an approach to structuring curriculum for physics, math, and electronics technology that doesn’t require wholesale disposal of previous work done.

STEM in a Sentence

When talking about Science-Technology-Engineering-Math (STEM) in education, we need more precise descriptions of WHAT the topic content of science is, what we DO with science, and how we APPLY it to the world around us. When I refer to “STEM” as a “table of contents”, I also recognize that the artistic methods of visualizing, writing, and finding context in culture and history are important to the process and procedures of “doing science”. So, put into the standard sentence structure, the “STEM content” is the subject, the “artistic method” is the verb, and the “real-world application” is the object.

What we need, I believe, is a comprehensive, modularized curriculum framework, beginning with the STEM content delivered in high schools and colleges. The content of each module and lesson would be provided by “experts”, and then packaged by instructional technologists using “best practices” for learning with interactive multimedia, and finally made available using open-source, online delivery channels.

The content modules within this framework would have the STEM topics arranged in a sequence as one dimension. A second dimension would then be a tag or label that clearly identifies the “Basic Workplace Skill Set” needed for successful entry into several occupational levels, starting with “Home & Consumer” to “User/Operator”  and so on to “Engineer”, and “Scientist”.

Connections with the Communication, Social, and Cultural Arts (CSCA) would be specified with the appropriate techniques, methods, and practices used in these  occupational skill levels. These processes and activities would be developed in collaboration with specialists from non-STEM areas.

The grid would then be expanded and cross-connected with Career & Technical Education (CTE) pathways, so students could select applications and projects relevant to their career interests and preferences.

Such a framework, then, would allow students to pursue their own pathways through the multi-dimensional learning space of possibilities along the three content, skill level, and career directions. They would also meet required standards by touching certain “milestones” along the way,. There would be flexibility to participate in collaborative classroom projects, while stepping up the proficiency ladder to advanced and related topics at their own pace, using online resources.

STEM in 3-D

Many comments about STEM seem to reflect the ongoing traditions of “silo-thinking”, promoting favored “channels” of instruction, while knocking down other viable approaches for STEM. As a retired instructor of physics, math, and electronics technology at a regional technical college, I continue to be involved in ways that include ALL students in the STEM curriculum as preparation for their lives and careers after high school.


These STEM goals need change in three directions, I believe, which extend across the grades and the disciplines. First, a systems approach should build the science content topics in the order of increasing complexity. This means that the high school courses need to be flipped to the natural evolutionary sequence of physics, chemistry, and then biology. Second, a clear definition is needed for each step of the “basic skills set” required for entry into the workplace at several occupational levels, beginning with a “Home and Consumer” baseline that matches the state science content standards for all high school graduates. And, finally, students need opportunities to explore various career and technical education (CTE) pathways throughout their high school years, so they can get a taste of where they might apply their abilities, interests, and learning in their productive years.


In comparison to the many “magic pill” proposals, such a multi-dimensional framework of core content realignment, basic workplace skill steps, and application in career pathways could give us the comprehensive STEM curriculum reform we need for the 21st Century workplace.