An Education “Transformation” in this Decade? Yes!

Throughout a variety of continued blog discussions, there appears to be a lot of repetitive bashing of the current “education system”, as though it were some dystopian governmental monolith, intentionally preserving its status quo through oppression of better ideas for teaching and learning. I suggest, though, that it is doing what it was designed to do, as a product of the Fordist assembly-line factory organization of the first half of the Twentieth Century. We should recognize that, as a vehicle without wings, traditional education cannot provide effective and relevant learning experiences for ALL students, as we wish. Further criticism won’t change the situation.

 

What is missing, though, are the understandings we have gained with a “PostModernist World View” which has evolved in latter half of the century. Von Bertalanffy, Boulding, and Beers (The “Three B’s” ?), among others, have given us “systems thinking” methods of looking a structures and relationships among  organizations to make them more efficient and cost-effective. Deming’s techniques of measuring quality can be also used to improve the rates of “success”, even when applied within that factory model.

 

Computer processing speed and displays now let us interact with modeling constructions so that we may visualize how natural, social, and education systems and processes work, to simulate alternatives, and to predict possible outcomes. Most recently, the use of digital media, wide-bandwidth communications, and data storage capacity have made quality content information available to the far reaches of the globe. We are also learning techniques of informatics for analysis and to make real-time recommendations about various choices students, teachers, and administrators can make, much as Amazon tracks and suggests our online shopping experiences. Also, the science of complexity has provided various “non-linear” ways of looking at learning and education as diverse, evolutionary, and emergent processes, utilizing effective strategies from gaming theory, graph theory, and risk management to improve the sustainability of our current and future societies.

 

So I see this decade as an exciting time in which a true transformation in education can occur, when the perspectives of “Systems, Quality, Modeling, Informatics, and Complexity (SQMIC)” are implemented. I feel these five perspectives are parts of “WKID Intelligence”, a substrate underlying the typical content areas  of STEM, the “Humanities, Arts, and Social Sciences (HASS), as well as “Health, Physical Education, and Recreation (HPER)”.  Access to a variety of interactive “apps” would provide tools to assist learning, as technology skills needed in a global economy, and would also be part of the organizational processes that guide their learning experiences.

 

Rather than an assembly of instructional components put in place and tested at certain times, learners could become designers of their own understandings of their world, by developing data into information, building that into the knowledge they need for entry into society, and, hopefully, gaining wisdom enough to become successful. Much like the “3-D printers” we are seeing these days, education could become an efficient, effective, and customized production and delivery system that morphs out of rigid traditional modes, and truly becomes a “Comprehensive STEM Curriculum Framework for the 21st Century”.

Flying John Boyds “OODA Loop” through STEM

John Boyd’s contribution to systems thinking was the “OODA Loop” – Observe, Orient, Decide, Act – with a feedback loop that brings the results back into a new cycle. As a combat fighter pilot instructor, he was known as “40 second Boyd” because he shot down every bogey within forty seconds of contact.

 

His key contribution was in the “Orient” thought process, in which the agent filters through “culture, genetics, ability to analyze and synthesize, and previous experience”, with a “faster tempo” than the adversary, who does not have enough time to “generate mental images”, with the effect of making the situation unpredictable. The most well-known strategic application of the OODA Loop, of course, was the Gulf War, in which the first strikes into Iraq disrupted Sadam’s communications networks, thus slowing his awareness of the actual situations.

 

A good description of the OODA Loop and its applications to military, business, and other aspects of systems thinking is provided on Wikipedia, as a first link to other reference information.

 

While it appears that many commentors to this thread express concerns about getting the whole “system of education” correct before we begin to take action, I prefer to utilize the OODA Loop, with incremental and iterative repetitions of trying new methods and evaluating the results, and then go around again, in developing an effective teaching/ learning system and process.

 

My descriptions of a “Comprehensive STEM Curriculum Framework for the 21st Century”, as described previously in this topic thread, identify every high school STEM topic with a three-dimensional coordinate of instructional modules and lessons in an “InfoSpace”, much like the Nevada skies Boyd flew in.

 

Those modules utilize the “Information Mapping” techniques of Robert E. Horn, in which the learning activities are developed using templates according to the type of instruction, such as: Fact, Concept, Structure, Procedure, Principle, Process, and System. Hyperlinks then connect the content modules to others, allowing alternative pathways through the InfoSpace, with waypoints identified for required graduation competencies. Each lesson, module, unit, and course has review and assessment components that give immediate feedback to the learner, and also provides documentation for the student, teacher, and administrators. This empowers learners to employ their own OODA Loops as they proceed through the highways and byways of the InfoSpace.

 

This overall plan, then, prepares the whole of STEM content in a way that allows flexible exploration, in groups or individually, using effective teaching/ learning practices, with immediate feedback to all stakeholders. I think that it is a “good enough” attempt to add to the discussion about transforming education. So while some may say that such a process may appear to be “designing and building the aircraft while flying it”, I don’t mind, since at least I’m flying – in the Boydian Way.

Using “Information Mapping” Techniques to Generate “Reusable Learning Objects”

The “instructional design” that I am working with is a modification of the “information mapping” (IM) work of Robert E. Horn. It is based on the idea that various “blocks” of information can be set within generic templates, so that documents, web pages, presentations do not have to be regenerated from scratch every time. So the templates and sample documents generally save time and effort by requiring only the details and specifics to a situation. It is mostly used for formal, standardized types of communications in the business world, to my understanding.

For instruction, the IM techniques and templates I use are based on a “package” that includes a “wrapper” of auxiliary information around the instructional content itself. Since the delivery, information, and support components of the wrapper are stored in a database, they are accessible as “reusable objects” in a variety of different applications through links to the database. The information itself does not have to be re-created and regenerated for every specific use, thus reducing the 40% of time you describe to 10%, for “the goals, the learning outcomes, activities in itself, the planning of it, the fitting, the adjustment, the linkage between learning activities, the assessments points, the anchor moments…”. With wireless access to this information, students could locate this auxiliary information at their convenience, reducing instructor effort.

For the content information itself, Horn organizes topics into several types and provides model templates for each, insuring that all the necessary components are provided for the best learning efficiency. I use the topic types of: fact, concept, structure, procedure, principle, process, and system. Again, the preparation effort becomes a matter of fitting the content into the proper “containers”. So this addresses your second point, that “here is the first strong moment: you can focus on that activity alone knowing that it will fit the overall puzzle you already have.” I suggest that this interaction time with the students could become 80% of the time, up from the 40% you suggest.

Since quiz, test, assessment, direct observation, and other evaluation techniques are built into the “wrapper” as a follow-up component, the feedback is continual and ongoing, in both part-task and full-task completion points. So the time for this part of the learning cycle should be 10%, I feel, rather than the 20% you mention.

The big advantage to beginning with a “package” template that prepares the content in modular form, and puts a “wrapper” of auxiliary data around it, is that it is reusable and scalable throughout the curriculum. It can be used at the course, unit, module, lesson, and topic levels. This addresses your concerns that ” after students pass all the activities you feel that you create something strong: with coherence and focus on the learning target”, and “if want to change anything you have a road map that helps you detect and change what you want without collapsing the structure.”

My current efforts involve converting a large amount of paper information to electronic form. The next step will be to put it all into a database as “elements”, which can then be packaged using the IM templates described above. I would later on like to put it into an open-source CMS, such as Moodle, so that my work is not involved with proprietary issues.

For over three decades of teaching at the high school and technical college levels, I was continually frustrated with have to redo instructional materials to revise, update, and improve them every time the “newest and greatest” instructional technique came around. By integrating and modifying ideas from Merrill, Clark, Horn, and others, I feel I now have an approach to structuring curriculum for physics, math, and electronics technology that doesn’t require wholesale disposal of previous work done.