Why Use Carbon (Technology), When We Have Silicon?

“… year after year, HS juniors ALWAYS scored lower than the sophomores on the middle school-level items.”

The math instructors at my technical college generalized that “math skills have a half-life of about two years”, which seems to corroborate that experience.

Our business and industry advisory committees demanded that we refresh pencil-paper computational skills for all the school associate-degree programs.  Their experience with applicants was that “back-up” computational methods (as well as “back-of-the-envelope”) were needed in the workplace in timely situations when technology was not available. They also emphasized the importance of “use-it-or-loose-it” continuous refreshment of basic skills. They still wanted pencil-paper computations to be refreshed.

My initial course assessment included a set of “no calculator” computations, as well as typical single-step problems for which calculators were allowed. A formula reference sheet was provided. The assessment was self-scored by the student the next class period, and did not impact their course grade. The final test contained the same skills. Item for item, but with different numbers.

Average score on the initial assessment was consistently about 50%, indicating that many skills had not been refreshed in the junior or senior high school years. We also had an approximate 15% non-traditional population, who had been out of school for several years. We noted that those who had dropped out of high school and obtained GEDs scored much lower.

According to my records, completers of my three-credit semester classes over two decades achieved an average of 82%. This gives evidence that recent, relevant, and required refreshing of math skills should be required of ALL students in the junior year.

While we never formalized or documented any research data on these results, our generalizations appear similar to your conclusions. I would appreciate any specific links to research that maybe useful on this important topic.

In any case, we found that carbon technology (the pencil) shouldn’t be discarded just because we now have silicon (the calculator).

Blame Teachers for Common Core?

Having participated with South Dakota science and math groups, from the first NSF-SSI (Statewide Systemic Initiative) in 1991, to 2009 when we handed off our final report (which merged into CCSS), we were all proud at the work we had done over the decades.

 

We had intense debates at summer workshops about better (not perfect) ways to develop and implement the standards (many of which are currently being regurgitated in the media). We took activities, projects, and new techniques back to our classrooms to see what would work for our students. We worked in collaboration with curriculum specialists, administrators, school boards, and concerned parents who visited our schools and classrooms. We battled legislators who had partisan agendas, and lobbying organizations that promoted special interests.

 

So the handoff to Common Core was an acknowledgement of the Pareto Principle – that it was 80% “good enough” to implement statewide and to scale nationally. Further tweaking would be part of the roll-out.

 

Our pride was in the accomplishment that we now had a comprehensive, integrated, and coordinated specification of what ALL American students should know for college and for career when they graduated from high school. We were finally able to address the concerns brought forth by the 1983 “Nation at Risk” report. We had a document that we could point to and say “This is what we should do”.

 

Yet, as expressed very well in the article, all hell broke loose after that.

 

As mentioned, there has not been much discussion about the PRODUCT – the standards themselves – other than the old claims about not being “rigorous” enough for SOME learners going on to professional careers. The alternative to the CCSS standards are NO standards – the failed status quo.

 

Intense heat, though, has developed around the implementation PROCESS, which, in fact, has been part of the existing school curricula, structure, and environment all along. In that respect, your article title is correct that the CCSS is not to blame.

 

So the first step is to quit the shouting – we know what the positions are, and who is promoting what. Teachers themselves need to recognize that while they are at the center focus of change, they do not need to provide answers about what that change should be.

 

The dialog should begin with school boards, community leaders, and concerned parents with scheduled opportunities for all to participate. Since they are also the ones who will be making decisions concerning selection of textbooks and materials, funding, staffing, etc., this would be part of an information gathering process that should have been occurring throughout the previous decades.

 

So don’t blame the CCSS standards, or the teachers – they are doing their part. Now begin the community conversations about improving our education SYSTEM – one school at a time.

An Education “Transformation” in this Decade? Yes!

Throughout a variety of continued blog discussions, there appears to be a lot of repetitive bashing of the current “education system”, as though it were some dystopian governmental monolith, intentionally preserving its status quo through oppression of better ideas for teaching and learning. I suggest, though, that it is doing what it was designed to do, as a product of the Fordist assembly-line factory organization of the first half of the Twentieth Century. We should recognize that, as a vehicle without wings, traditional education cannot provide effective and relevant learning experiences for ALL students, as we wish. Further criticism won’t change the situation.

 

What is missing, though, are the understandings we have gained with a “PostModernist World View” which has evolved in latter half of the century. Von Bertalanffy, Boulding, and Beers (The “Three B’s” ?), among others, have given us “systems thinking” methods of looking a structures and relationships among  organizations to make them more efficient and cost-effective. Deming’s techniques of measuring quality can be also used to improve the rates of “success”, even when applied within that factory model.

 

Computer processing speed and displays now let us interact with modeling constructions so that we may visualize how natural, social, and education systems and processes work, to simulate alternatives, and to predict possible outcomes. Most recently, the use of digital media, wide-bandwidth communications, and data storage capacity have made quality content information available to the far reaches of the globe. We are also learning techniques of informatics for analysis and to make real-time recommendations about various choices students, teachers, and administrators can make, much as Amazon tracks and suggests our online shopping experiences. Also, the science of complexity has provided various “non-linear” ways of looking at learning and education as diverse, evolutionary, and emergent processes, utilizing effective strategies from gaming theory, graph theory, and risk management to improve the sustainability of our current and future societies.

 

So I see this decade as an exciting time in which a true transformation in education can occur, when the perspectives of “Systems, Quality, Modeling, Informatics, and Complexity (SQMIC)” are implemented. I feel these five perspectives are parts of “WKID Intelligence”, a substrate underlying the typical content areas  of STEM, the “Humanities, Arts, and Social Sciences (HASS), as well as “Health, Physical Education, and Recreation (HPER)”.  Access to a variety of interactive “apps” would provide tools to assist learning, as technology skills needed in a global economy, and would also be part of the organizational processes that guide their learning experiences.

 

Rather than an assembly of instructional components put in place and tested at certain times, learners could become designers of their own understandings of their world, by developing data into information, building that into the knowledge they need for entry into society, and, hopefully, gaining wisdom enough to become successful. Much like the “3-D printers” we are seeing these days, education could become an efficient, effective, and customized production and delivery system that morphs out of rigid traditional modes, and truly becomes a “Comprehensive STEM Curriculum Framework for the 21st Century”.

Flying John Boyds “OODA Loop” through STEM

John Boyd’s contribution to systems thinking was the “OODA Loop” – Observe, Orient, Decide, Act – with a feedback loop that brings the results back into a new cycle. As a combat fighter pilot instructor, he was known as “40 second Boyd” because he shot down every bogey within forty seconds of contact.

 

His key contribution was in the “Orient” thought process, in which the agent filters through “culture, genetics, ability to analyze and synthesize, and previous experience”, with a “faster tempo” than the adversary, who does not have enough time to “generate mental images”, with the effect of making the situation unpredictable. The most well-known strategic application of the OODA Loop, of course, was the Gulf War, in which the first strikes into Iraq disrupted Sadam’s communications networks, thus slowing his awareness of the actual situations.

 

A good description of the OODA Loop and its applications to military, business, and other aspects of systems thinking is provided on Wikipedia, as a first link to other reference information.

 

While it appears that many commentors to this thread express concerns about getting the whole “system of education” correct before we begin to take action, I prefer to utilize the OODA Loop, with incremental and iterative repetitions of trying new methods and evaluating the results, and then go around again, in developing an effective teaching/ learning system and process.

 

My descriptions of a “Comprehensive STEM Curriculum Framework for the 21st Century”, as described previously in this topic thread, identify every high school STEM topic with a three-dimensional coordinate of instructional modules and lessons in an “InfoSpace”, much like the Nevada skies Boyd flew in.

 

Those modules utilize the “Information Mapping” techniques of Robert E. Horn, in which the learning activities are developed using templates according to the type of instruction, such as: Fact, Concept, Structure, Procedure, Principle, Process, and System. Hyperlinks then connect the content modules to others, allowing alternative pathways through the InfoSpace, with waypoints identified for required graduation competencies. Each lesson, module, unit, and course has review and assessment components that give immediate feedback to the learner, and also provides documentation for the student, teacher, and administrators. This empowers learners to employ their own OODA Loops as they proceed through the highways and byways of the InfoSpace.

 

This overall plan, then, prepares the whole of STEM content in a way that allows flexible exploration, in groups or individually, using effective teaching/ learning practices, with immediate feedback to all stakeholders. I think that it is a “good enough” attempt to add to the discussion about transforming education. So while some may say that such a process may appear to be “designing and building the aircraft while flying it”, I don’t mind, since at least I’m flying – in the Boydian Way.

STEM in a Sentence

When talking about Science-Technology-Engineering-Math (STEM) in education, we need more precise descriptions of WHAT the topic content of science is, what we DO with science, and how we APPLY it to the world around us. When I refer to “STEM” as a “table of contents”, I also recognize that the artistic methods of visualizing, writing, and finding context in culture and history are important to the process and procedures of “doing science”. So, put into the standard sentence structure, the “STEM content” is the subject, the “artistic method” is the verb, and the “real-world application” is the object.

What we need, I believe, is a comprehensive, modularized curriculum framework, beginning with the STEM content delivered in high schools and colleges. The content of each module and lesson would be provided by “experts”, and then packaged by instructional technologists using “best practices” for learning with interactive multimedia, and finally made available using open-source, online delivery channels.

The content modules within this framework would have the STEM topics arranged in a sequence as one dimension. A second dimension would then be a tag or label that clearly identifies the “Basic Workplace Skill Set” needed for successful entry into several occupational levels, starting with “Home & Consumer” to “User/Operator”  and so on to “Engineer”, and “Scientist”.

Connections with the Communication, Social, and Cultural Arts (CSCA) would be specified with the appropriate techniques, methods, and practices used in these  occupational skill levels. These processes and activities would be developed in collaboration with specialists from non-STEM areas.

The grid would then be expanded and cross-connected with Career & Technical Education (CTE) pathways, so students could select applications and projects relevant to their career interests and preferences.

Such a framework, then, would allow students to pursue their own pathways through the multi-dimensional learning space of possibilities along the three content, skill level, and career directions. They would also meet required standards by touching certain “milestones” along the way,. There would be flexibility to participate in collaborative classroom projects, while stepping up the proficiency ladder to advanced and related topics at their own pace, using online resources.